Apa itu Data Mining? Pengertian, Metode, Tahapan, dan Contoh Terbaru
Populix

Apa itu Data Mining? Pengertian, Metode, Tahapan, dan Contoh Terbaru

11 bulan yang lalu 7 MENIT MEMBACA

Pernah mendengar istilah data mining? Bagi seorang awam, istilah ini mungkin masih asing didengar. Data mining adalah metode untuk menemukan pola tertentu dari kumpulan data yang berjumlah besar.

Meskipun banyak dipelajari pada bidang ilmu komputer dan statistika, data mining adalah metode yang bisa diterapkan dan mempermudah pekerjaan di bidang lainnya juga. Namun sebenarnya apa itu data mining? Apa bedanya dengan data warehouse? Simak selengkapnya pada ulasan Populix di bawah ini.

1. Apa itu Data Mining?

a. Pengertian data mining menurut para Ahli

b. Perbedaan data warehouse dan data mining

2. Metode data mining

3. Tahapan Data Mining

4. Contoh data mining

a. Contoh data mining perusahaan

5. Manfaat data mining

Apa itu data mining?

Data mining adalah metode dalam ilmu komputer yang biasa digunakan dalam proses pencarian knowledge. Tahapan di dalamnya berguna untuk mencari pola-pola tertentu dari data yang ada pada database. Biasanya, metode ini banyak ditemukan pada bidang machine learning dan statistika.

Pada awalnya, metode penambangan data dikembangkan karena kompleksitas kerja komputer yang semakin meningkat. Namun, disinilah keuntungan adanya data mining adalah proses pengumpulan dan seleksi data yang lebih praktis.

Pengertian data mining menurut para ahli

Sebagai definisi lain, ada beberapa pengertian data mining menurut para ahli yang juga patut dipelajari. Simak penjelasan secara singkat di bawah ini.

Larose (2006), mengartikan data mining adalah sebuah proses menemukan sesuatu bermakna dengan memilah data melalui repository dengan bantuan teknologi sosialisasi pola, statistik, serta matematika.

Berry, data mining adalah sebuah aktivitas analisa data yang memiliki jumlah besar demi menemukan pola (pattern) dan aturan (rule) yang berguna.

Pramudiono (2006), menyampaikan bahwa data mining adalah proses analisa yang dilakukan secara otomatis pada data yang kompleks dan berjumlah besar untuk memperoleh sebuah pola atau kecenderungan yang umumnya tidak disadari.

Perbedaan data warehouse dan data mining

Tidak sedikit orang yang belum mengetahui apa perbedaan data warehouse dan data mining. Dari segi namanya, data mining adalah gabungan dari dua kata bahasa Inggris “data” yang berarti data dan “mining” yang berarti menambang. Dengan kata lain, data mining adalah sebuah proses penambangan data. Sedangkan data “warehouse” adalah sebuah gudang atau tempat penyimpanan data.

Selain perbedaan data warehousing dan data mining, keduanya memiliki kesamaan pemakaian kata yang ditujukan untuk menggambarkan sebuah proses. Namun data warehousing berarti pengumpulan data.

Terlepas dari perbedaan data warehouse dan data mining, keduanya masih saling berkaitan. Proses penambangan data membutuhkan data warehouse untuk mengambil data yang akan diolah dan diamati polanya.

Baca juga : Contoh CRM untuk Perusahaan hingga Manfaat & Cara Penerapan

Metode data mining

Metode data mining adalah cara yang diterapkan namun perlu disesuaikan dengan tujuan penggunanya. Ada beberapa pembagian metode data mining berikut yang bisa ketahui.

1. Classification

Klasifikasi data mining adalah sebuah proses menemukan definisi kesamaan karakteristik dalam suatu kelompok atau kelas (class). Klasifikasi data mining menjadi salah satu metode yang paling umum untuk digunakan. Metode ini dilakukan bertujuan untuk memperkirakan kelas dari suatu objek yang labelnya belum diketahui.

2. Association

Metode data mining yang kedua adalah Market basket analysis (analisa keranjang pasar) atau association. Berhubungan dengan pemasaran, metode ini bertujuan untuk mengidentifikasi produk yang sering dibeli bersamaan oleh pelanggan.

Bagaimana contohnya? Misalnya beberapa pelanggan akan membeli snack dan minuman kemasan bersamaan. Dengan begitu perusahaan lebih mudah mengetahui kalau kedua barang tersebut sering dibeli bersamaan.

3. Clustering

Clustering data mining adalah nama lain untuk metode segmentation. Tujuan dari segmentasi pada metode data mining adalah mengelompokkan suatu class ke dalam beberapa segmen berdasarkan atribut yang ditentukan. Penentuan atribut harus sesuai kesamaan yang dimiliki beberapa class tadi.

4. Regression

Metode keempat dari data mining adalah regression. Metode yang satu ini sedikit mirip dengan klasifikasi data mining. Bedanya, regresi merupakan metode yang bertujuan untuk mencari pola nilai numerik, bukan kelas. Hasil dari metode regression adalah sebuah fungsi sebagai penentu hasil yang didasarkan nilai dari input.

5. Forecasting

Forecasting data mining adalah metode yang digunakan untuk memprediksi nilai yang akan dicapai pada satu periode. Dengan menggunakan teknik ini, noise data dan nilai pada periode sebelumnya dijadikan dasar bahan prediksi.

6. Sequencing

Sequence adalah sebuah urutan peristiwa. Tidak jauh dari namanya, metode sequence analysis berfungsi untuk mencari sebuah pola pada serangkaian kejadian atau sequence. Contoh sederhananya dalam kehidupan sehari-hari adalah ketika makan. Rangkaian yang umum dilakukan adalah mengambil piring, sendok dan garpu, kemudian baru mengambil lauk pauk. Pola seperti itu lah yang berusaha dicari tahu melalui sequencing.

7. Descriptive

Metode data mining yang satu ini bertujuan untuk memahami lebih dalam mengenai data-data yang masuk dalam pengamatan. Hasil akhirnya adalah mengetahui perilaku dari data itu sendiri.

Tahapan Data Mining

Sederhananya, Anda bisa menganalogikan proses data mining dengan penambangan emas. Sebagai penambang emas, pastinya harus melakukan beberapa tahapan agar butiran batu mentah biasa bisa berubah menjadi emas berharga. Bagaimana penerapannya dalam tahapan data mining? Simak penjelasan tahapan data mining di bawah ini.

1. Pembersihan data (data cleaning)

Dalam proses menambang emas, tahap awal yang dilakukan adalah dengan mencari batu atau lumpur yang sekiranya bisa diolah menjadi emas yang bagus. Dalam proses tersebut, pasti menemukan satu atau bahkan mencapai puluhan batu yang kurang layak untuk diproses. Sehingga batu-batu itu perlu dibuang.

Begitu juga penerapannya dalam tahapan data mining. Sebelum diproses dan dibentuk menjadi sebuah knowledge, data yang ada harus dibersihkan terlebih dahulu. Jika ada yang mengandung eror, maka data-data tersebut harus dibuang. Sehingga tersisa data yang ‘bagus’ untuk diolah dalam tahap selanjutnya.

2. Integrasi data (data integration)

Langkah kedua dalam tahapan data mining adalah integrasi data. Setelah menemukan batu-batu yang cocok, selanjutnya penambang akan mulai mengkombinasikan untuk dijadikan batangan emas atau bentuk emas lainnya. Dalam data mining, data yang berhasil dibersihkan juga akan diintegrasi.

3. Transformation

Seperti bentuk emas yang berbeda-beda, maka proses pembentukannya juga akan berbeda. Begitu juga dengan data, dalam tahap transformation data akan dipilih dan diubah formatnya agar sesuai dengan teknik atau metode yang dipakai. Pada tahap ini pula kualitas data mining akan terlihat.

4. Data mining

Tahapan data mining selanjutnya adalah proses penambangan data itu sendiri. Perlu penentuan metode penambangan yang tepat.

5. Evaluasi pola (pattern evaluation)

Setelah bahan mentah emas selesai diolah, maka perlu diuji juga apakah sudah sesuai dengan standar kualitasnya atau belum. Baru setelah itu bisa didistribusikan ke toko emas dan di-display kepada pelanggan.

Setelah selesai melakukan proses data mining, pola-pola yang dihasilkan dari proses tersebut perlu untuk dievaluasi. Tujuan dari dilakukannya evaluasi adalah untuk menguji hipotesis awal. Setelah teruji data bisa dipresentasikan kepada pengguna.

Contoh data mining

Bagaimana penerapan metode ini jika dilihat dari segi ilmu yang lain? Simak ulasan tentang contoh data mining pada perusahaan di bawah ini.

Contoh data mining perusahaan

Sebuah perusahaan terdiri dari berbagai macam divisi, salah satunya adalah pemasaran produk. Pola-pola yang dihasilkan dari proses data mining bisa membantu mereka untuk mengidentifikasi karakteristik pembeli. Setelah mengetahui bagaimana pola konsumen, maka akan lebih mudah dalam mendesain promosi dan pengembangan produk.

Selain itu, data mining adalah metode yang bisa membantu suatu industri dalam memprediksi perilaku konsumen. Seperti yang kita tahu, perilaku konsumen adalah segala tindakan konsumen terhadap suatu perusahaan atau produk. Dengan algoritma data mining, akan lebih mudah bagi perusahaan untuk memantau dan mengamati kebiasaan perilaku yang dilakukan oleh seorang pelanggan. Sehingga kedepannya perusahaan bisa menyusun strategi yang lebih efektif dengan mudah.

Manfaat data mining

Secara teknis, metode ini memang tidak lepas dari ilmu komputer dan kecerdasan buatan. Tetapi ternyata manfaatnya bisa dirasakan dalam berbagai bidang lainnya, termasuk bisnis dan pemasaran. Berikut sejumlah manfaat data mining.

  1. Mengetahui tren
  2. Metode untuk memprediksi keputusan bisnis di masa depan
  3. Mengetahui produk yang dibeli bersamaan
  4. Mengamati perilaku konsumen
  5. Model sebagai sarana menyusun strategi peningkatan penjualan

Itu tadi ulasan Populix tentang apa itu data mining hingga manfaatnya jika digunakan dalam bidan yang lain. Kesimpulannya, data mining adalah sebuah metode yang bisa difungsikan oleh beberapa orang dengan latar belakang bidang yang berbeda.

Bahkan sebagai seorang pebisnis, Anda bisa mengamati pasar dengan pola yang dibentuk dari data mining. Karena itu, coba ambil manfaat data mining ketika Anda meneliti pasar. Simak informasi penting dan menarik seputar bisnis lainnya pada Populix.

Artikel Terkait
Self Healing Adalah Proses Diri Mengobati Luka, Ini Caranya!
Self healing adalah suatu tindakan yang bertujuan untuk menyembuhkan luka batin seseorang, baik akibat trauma, pengalaman buruk, atau gangguan kejiwaan. Penyembuhan ini dapat dilakukan sendiri melalui meditasi, yoga, menjalankan hobi, maupun dengan bantuan tenaga profesional seperti psikolog atau psikiater. Topik satu ini kerap kali menjadi topik pembahasan di media sosial maupun forum-forum peduli kesehatan mental. […]
Manajemen Stress: Cara dan Manfaatnya untuk Kesehatan Mental
Di zaman serba cepat dan penuh distraksi seperti sekarang ini, manajemen stress adalah kemampuan yang harus dimiliki semua orang. Sebab, hal ini akan membantu Anda mempertahankan produktivitas dan mengatasi burnout. Namun mungkin Anda masih bingung, sebenarnya, apa itu manajemen stress? Secara sederhana, manajemen stress adalah cara atau metode yang dilakukan seseorang untuk mengurangi dampak negatif […]
Pengertian Kuesioner, Jenis, Cara Membuat dan Contohnya
Di dalam sebuah penelitian, diperlukan adanya teknik pengumpulan data. Teknik pengumpulan data sendiri dibedakan menjadi dua, yaitu primer dan sekunder. Metode kuesioner adalah salah satu contoh pengumpulan data primer. Metode ini merupakan pengambilan data secara langsung kepada responden melalui pengisian survei. Artikel berikut akan membahas seputar kuesioner mulai dari pengertian, jenis, cara membuat, dan contohnya. […]